Architecture¶
LogXide leverages Rust's performance and safety with Python's ease of use through a sophisticated async architecture.
Core Architecture¶
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Python API │ │ Rust Core │ │ Tokio Runtime │
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌──────────────┐ │ │ ┌─────────────┐ │
│ │ PyLogger │ │───▶│ │ LogRecord │ │───▶│ │ Async │ │
│ │ Methods │ │ │ │ Creation │ │ │ │ Handlers │ │
│ └─────────────┘ │ │ └──────────────┘ │ │ └─────────────┘ │
│ │ │ │ │ │
│ ┌─────────────┐ │ │ ┌──────────────┐ │ │ ┌─────────────┐ │
│ │ basicConfig │ │───▶│ │ Channel │ │───▶│ │ Concurrent │ │
│ │ flush() │ │ │ │ Management │ │ │ │ Processing │ │
│ └─────────────┘ │ │ └──────────────┘ │ │ └─────────────┘ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
Message Processing Flow¶
- Python Call → LogXide PyLogger methods
- Record Creation → Rust LogRecord with full metadata
- Async Channel → Non-blocking message passing to Tokio runtime
- Concurrent Processing → Multiple handlers execute in parallel
- Output → Formatted messages to files/streams/handlers
Key Components¶
PyO3 Integration¶
- Zero-copy data transfer between Python and Rust
- Native Python objects for seamless integration
- Exception handling that preserves Python semantics
Async Message Processing¶
- Non-blocking channels with 1024-capacity buffers
- Tokio runtime with dedicated thread pool
- Backpressure handling for high-throughput scenarios
Concurrent Handlers¶
- Parallel execution for maximum throughput
- Handler isolation prevents one handler from blocking others
- Error resilience ensures continued operation
Memory Management¶
- Rust's ownership system prevents memory leaks
- Arc-based sharing for efficient data sharing
- Minimal allocations in hot paths
Performance Optimizations¶
Lock-Free Design¶
- Atomic operations for shared state
- Channel-based communication eliminates locks
- Thread-local buffers where possible
Efficient String Handling¶
- Rust's formatter for fast string processing
- String interning for repeated logger names
- Copy-on-write semantics for format strings
Async I/O¶
- Non-blocking file operations
- Batched writes for improved throughput
- Async flush operations
Thread Safety¶
LogXide is designed from the ground up for multi-threaded applications:
- Thread-safe logger instances can be shared across threads
- Async runtime handles concurrent access automatically
- No global locks that could cause contention
- Per-thread optimization where beneficial
Handler Architecture¶
┌─────────────────┐
│ Handler Registry│
├─────────────────┤
│ ┌─────────────┐ │
│ │FileHandler │ │───┐
│ └─────────────┘ │ │
│ ┌─────────────┐ │ │ ┌──────────────┐
│ │StreamHandler│ │───┼───▶│ Concurrent │
│ └─────────────┘ │ │ │ Execution │
│ ┌─────────────┐ │ │ └──────────────┘
│ │CustomHandler│ │───┘
│ └─────────────┘ │
└─────────────────┘
Handler Types¶
- ConsoleHandler: Optimized console output
- FileHandler: Async file writing with buffering
- RotatingFileHandler: Automatic log rotation
- PythonHandler: Bridge to Python-based handlers
Memory Layout¶
Log Record Structure¶
pub struct LogRecord {
pub logger_name: String,
pub level: LogLevel,
pub message: String,
pub timestamp: SystemTime,
pub thread_id: u64,
pub thread_name: Option<String>,
// ... additional metadata
}
Channel Architecture¶
// Unbounded channel for maximum throughput
crossbeam::channel::unbounded::<LogMessage>()
// Message types
enum LogMessage {
Record(Box<LogRecord>),
Flush(oneshot::Sender<()>),
}
Comparison with Standard Logging¶
Aspect | Python logging | LogXide |
---|---|---|
Threading | Global locks | Lock-free |
I/O | Synchronous | Asynchronous |
Memory | GC overhead | Zero-copy where possible |
Error handling | Exceptions can block | Isolated error handling |
Performance | Single-threaded bottlenecks | Concurrent processing |
Future Architecture Plans¶
Planned Optimizations¶
- SIMD string processing for format operations
- Memory pooling for log record allocation
- Adaptive batching based on throughput
- Custom allocators for specific use cases
Plugin Architecture¶
- Handler plugins for custom output formats
- Filter plugins for advanced message filtering
- Formatter plugins for domain-specific formatting
Best Practices¶
For High Performance¶
- Use async handlers when possible
- Avoid frequent logger creation
- Use appropriate buffer sizes
- Consider message batching for extreme throughput
For Reliability¶
- Handle handler errors gracefully
- Monitor channel capacity
- Use flush() for critical messages
- Test under load conditions
For Memory Efficiency¶
- Reuse logger instances
- Avoid large format strings
- Use string interning for repeated values
- Monitor memory usage in long-running processes